CHROM. 5 II5

SEPARATION AND IDENTIFICATION OF FOOD COLOURS

I. IDENTIFICATION OF SYNTHETIC WATER SOLUBLE FOOD COLOURS USING THIN-LAYER CHROMATOGRAPHY

IR. A. HOODLESS, K. G. PITMAN, I. E. STEWART, J. THOMSON AND J. E. ARNOLD*
Department of Trade and Industry, Laboratory of the Government Chemist, London S.E.I (Great Britain)
(Received November 2nd, 1970)

SUMMARY

A thin-layer chromatographic method is described for the separation and identification of forty-nine synthetic food colours which are used in food products or which have been used. R_{F} and R_{X} (with respect to Orange G) values are tabulated and a scheme for the rapid iclentification of the components of a mixture of dyes is proposed.

INTRODUCTION

Colouring matters in food

Processed foods are often coloured to retain the appearance of the original material and to provide a more appealing product. Foodstuffs may be coloured by (a) synthetic organic dyestuffs, (b) inorganic pigments and (c) natural colouring materials obtained from vegetable and animal sources. Synthetic organic dyestuffs are generally used. However, no two countries in the world have identical lists of permitted food colours because there are differences of opinion about the toxicity of the various food colours. Consequently it is possible that foodstuffs may be imported into a country which forbids the colouring matters present in the products. A method has been developed for the identification of synthetic food colours using thin-layer chromatography. The dyes covered by the method are those which are permitted in countries, who are members of the Codex Alimentarius Commission, or dyes which have been used in the past but are now considered too harmful for use in foodstuffs. These dyes are listed in Table I together with their colour index number and the countries in which they are permitted.

A number of thin-layer chromatographic separations of water soluble dyes used in food have been described but most of these deal with only a limited number of dyes; normally those permitted in one country only or a group of dyes of similar

[^0]R. A. hoodless, k. G. pitman, T. E. Stewart, J. Thomson, J. E. ARNOLD
TABLE I
FOOD DYES PERMITTED IN VARIOUS COUNTRIES

TABLIE II
CODES FOR DYES CHROMATOGRAPHED IN SOLVENTS $1,2,3, A N D$ 4

Code	Possible identity of dye	Code	Possible identity of dye	Code	Possible identity of dye
AAAA	Blue VRS	DADC	Orange RN	EBDE	Carmoisine
	Brilliant Blue	DBCA	Naphthol Yellow S	EBEB	Quinoline Yellow
	Light Green	DBCB	Orange GGN	EBEC	Quinoline Yellow
	Yellowish		Sunset Yellow	ECCA	Orange IRN
	Patent Blue V	DBCC	Orange GGN	ECCB	Fast Red E
AAAB	Brilliant Blue		Sunset Yellow	ECCC	Fast Red E
	Fast Green	DCCA	Orange RN		Incligo Carmine
	Green S	DCCB	Orange GGN		Orange IRN
	Light Green		Sunset Yellow		Red Io B
	Yellowish	DCCC	Acid Yellow	ECCD	Carmoisine
	Patent Blue V		Orange GGN		Indigo Carmine
	Yellow 2G		Orange RN		Red Io B
AAAC	Yellow 2G		Sunset Yellow	ECCE	Carmoisine
$A A B A$	Scarlet GN	DCCD	Acid Yellow		Red io B
AACA	Scarlet GN		Orange GGN	ECDA	Orange RNN
ABAA	Brilliant Blue		Sunset Yellow	ECDB	Fast Red E
	Light Green	DCDA	Orange RN	ECDC	Bordeaux B
	Yellowish	DCDC	Orange RN		Fast Red E
ABAB	Brilliant Blue	DCDD	Red 6B		Indigo Carmine
	Light Green	DCDE	Red 6B		Orange RN
	Yellowish	DCED	Red 6B		Ponceau 3R
ABAC	Acid Magenta	DCEE	Red 6B		Ponceau MX
ABAD	Acid Magenta	DDDD	Amaranth		Ponceau SX
$A C A C$	Acid Magenta		Red 6B		Red ro B
ACAD	Acid Magenta	DDDE	Red 6B	ECDD	Carmoisine
ACCD	Tartrazine	DDED	Red 6B		Indigo Carmine
ADCD	Ponceau 6R	DDEE	Red 6B		Ponceau SX
	'rartrazine	DEDD	Red 6B		Red 6B
ADCE	Ponceau 6R	DEDE	Red 6B		Red rob
AECD	Ponceau 6R	DEED	Red 6B	ECDE	Carmoisine
AECE	Ponceau 6R	DEEE	Red 6B		Red 6B
BAAA		EAAA		IECEC	
	Violet 5BN		Methyl Violet		Bordcaux 13
	Violet BNP		Rhodamine B		Ponceau 3 R
BBBB	Orange G		Violet 6B		Ponceau MX
BCBC	Ponceau $4 R$	EABA	Auramine		Ponceau SX
BCCC	Ponceau 4 R		Methyl Violet	ECED	Ponccau SX
BCCD	Tartrazine		Fhodamine B		Red 6B
BDCD	Tartrazine	EACA	Auramine	ECEE	Red 6B
CAAA	Guinea Green B		Eosine	EDCC	Indigo Carmine
	Violet BNP		Erythrosine		Red Io B
	Violet 5BN		Chrysoidine	EDCD	Indigo Carmine
	Violet 6B		Orange I		Red ro B
CACB	Chrysoin S		Orange RN	EDCE	Red ro B
CACC	Chrysoin S	EACB	Chrysoidine	EDDC	Indigo Carmine
CBCA	Naphthol Yellow S		Eosine		Red io B
CBCB	Orange GGN		Erythrosine	EDDD	Indigo Carmine
	Sunset Yellow		Orange I		Red 6B
CBCC	Orange GGN	EACC	Chrysoin 5		Red ro B
	Sunset Yellow		Orange RN	EDDE	Red 6B
$\begin{aligned} & \text { CCBC } \\ & \text { CCCB } \end{aligned}$	Ponceau 4 R Acid Yellow	EADA	Chrysoidine Orange I	EDED	Red ro B ${ }^{\text {Black } 7984}$
	Orange GGN		Orange RN		Black PN
	Sunset Yellow	EADB	Orange I		Red 6B
CCCC	Acid Yellow Orange GGN	EADC	Quinoline Yellow Orange RN	EDEE	Black 7984 Black PN

TABLEII (continued)

colour ${ }^{1-13}$. Cellulose and silica gel appeared to be the two most promising adsorbents for the separation of the water soluble dyes and so we have used only these two adsorbents with a variety of development solvents as listed in Table III.

A scheme for the quick identification of a colour or mixture of colours is proposed which is not dependent on the measurement of R_{F} values. This consists of running the dye or mixture of dyes in four solvents on thin-layer plates coated with cellulose with two standard dyes and then giving the dyes a code depending on where they travel to in relation to the two standard dyes. This code is compared with the list of codes given in Table II thereby giving an initial identification of the dyes. The identity of the food colour is then confirmed by running in solvents together with spots of the suspected food colours.

TABLE III

CHROMATOGRAPHIC SOLVENTS USED IN THE THIN-LAYER CHROMATOGRAPHIC SEPARATION OF THE DYES
Solvents $\mathbf{1 - r o}$ are used with cellulose plates; solvents $\mathbf{1 r - 1 5}$ are used with silica gel plates.

Solvent No.	Composition	Reference
1	Trisodium citrate (2 g), water (85 ml), 0.88 ammonia (15 ml)	1
2	tert.-Butanol-propanoic acicl-water ($50: 12: 38$)	I
3	Trisodium citrate (2 g), hexamine (5 g), water (50 ml), methanol (50 ml)	3
4	2-Methyl propan-1-ol-water-cthanol-o.88 ammonia (25:25:50:2)	2
5	Propan-r-ol-ethyl acetate-water (6:1:3)	1
6	Butan-r-ol-water-glacial acetic acid (20:12:10)	-
7	Hydrochloric acid, S.G. I.I8-water ($23: 77$)	-
8	Butan-r-ol-water-pyridine-ethanol (4:4:2:2)	-
9	Ethyl methyl ketone-acetone-water-0.83 ammonia ($70: 30: 30: 0.5$)	-
ro	13utan-r-ol-water-ethanol-quinolinc (4:4:3:2)	-
II	Propan-2-ol-0.88 ammonia (4:1)	2
12	Propan-2-01-0.88 ammonia (85:15)	-
13	Methanol-chloroform-water-quinoline (4:2:2:2)	-
14	Methanol-chloroform-quinoline (4:4:2)	-
I 5	Propan-2-ol-chloroform-water-diethylamine (50:25:20:15)	-

MATERIALS AND METHODS

Apparatus

Thin-layer chromatographic apparatus for the preparation of thin layers 0.25 mm thick on $200 \times 200 \mathrm{~mm}$ glass plates. Chromatographic development tanks. $5 \mu \mathrm{l}$ pipettes e.g. Microcap disposable pipettes.

Reagents

Cellulose powder. Microcrystalline cellulose, available from Applied Science Laboratories Inc. Prepare plates as follows: Shake 20 g cellulose powder with 60 ml methanol for 3 min and blend at high speed for 30 sec . Spread onto plates and air-dry or dry in an oven at 80°.

Silica Gel G. Available from E. Merck. Prepare plates as follows: Shake 30 g Silica Gel G with 60 ml water for I to 2 min . Spread onto plates and, after the layer has set, activate the plates by heating to 105° for I h.

Reference dye solutions. o.I \% in water.
Chromatographic solvents. See Table III. All solvent mixtures should be freshly prepared.

Procedure

Place two spots of $1-2 \mu \mathrm{l}$ of the dye solution onto each of four cellulose plates at a distance of at least 20 mm from the edge and bottom of the plate. Also spot on the plates $I-2 \mu$ of a solution of Orange G and a solution of Amaranth as reference spots and place a spot of a mixture of Orange G and Amaranth on top of one of the sample spots. Dry the spots by placing the plates in an oven at 105° for $5-10$ min. Develop the cooled plates in solvents $1,2,3$ and 4 for a length of run of about 150 mm at room temperature. Remove the plates from the tanks and allow them to air dry. When the plates are dry rule lines across so as to divide the plates into the following sections: code A: spots travelling above Orange G; code B: spots travelling with Orange G; code C: spots travelling below Orange G but above Amaranth; code D: spots travelling with Amaranth; code E: spots travelling below Amaranth.

Check whether the sample has affected the development characteristics of Orange G and Amaranth and if so make allowance for this when dividing the plate into sections. Observe which section the spots from the sample solution appear in for each plate and write down all possible composite codes for each spot by listing the code individual letters in the order-solvent 1 , solvent 2 , solvent 3 , solvent 4 . Compare the codes with the list given in Table II and hence obtain a preliminary identification of the dyes. When two or more spots are similar in colour, cross code the dyes so that all possible dyes are obtained from Table II. Also if a dye is visible in one solvent but not in another then this indicates that the dye is masked by another dye and so all codes for spots in that solvent must be used in constructing the composite codes. A further identification of the dyes may be obtained by calculating the $\boldsymbol{R}_{\boldsymbol{F}}$ and $\boldsymbol{R}_{\boldsymbol{X}}$ (with respect to Orange G) values and referring to the Tables IV-VII. This will eliminate some of the dyes obtained from Table II. All R_{F} and R_{X} values have been calculated by measuring to the leading edge of the spots.

The identification of the sample dye is then confirmed by chromatography on a plate with standard spots of the suspected colours using suitable solvents. Spots of
J. Chromatog., 54 (1971) 393-404

CABLE IV

$?_{f}$ and R_{x} (with respect to Orange G) values for red dyes

Solour	Colour index No.	Approximate R_{p} values									Approximate $R_{\boldsymbol{x}}$ values								
		Solvent No.									Solvent No.								
		I	2	3	4	5	6	8	9	II	I	2	3	4	5	6	8	9	rI
Amaranth	16185	0.6	0.3	0.5	0.6	0.4	0.2	0.6	0.4	0.4	0.8	0.4	0.5	0.8	0.7	0.4	0.8	0.4	0.9
Bordeaux B	16180	0.2	0.6	0.4	0.6	0.5	0.6	0.7	1.0	0.4	0.3	0.9	0.4	0.8	0.9	I. 0	1.0	1.0	0.9
Carmoisine	14720	0.3	0.7	0.6	0.5	0.7	0.6	0.8	0.9	0.4	0.4	I. 1	0.6	0.7	1.1	1.0	I. 1	0.9	0.9
Eosine	45380	2	1.0	0.7	0.8	I. ${ }^{\text {a }}$	1.0	0.9	1.0	0.6	0.3	1.5	0.7	I.I	1.6	I. 7	1.3	1.0	I. 4
Erythrosine	45430	0.1	1.0	0.7	0.9	1.0	1.0	0.9	I. 0	0.7	0.2	1. 5	0.7	I. 2	1.6	1.7	I. 3	1.0	I. 6
Fast Red E	16045	0.4	0.7	0.6	0.7	0.6	0.5	0.8	1.0	0.4	0.6	I. 0	0.6	I. 0	1.0	0.9	I.I	1.0	0.9
Ponceal 3 R	16155	0.2	0.6	0.4	0.6	0.5	0.5	0.8	0.9	0.3	0.3	0.9	0.4	0.8	0.7	0.9	1.1	0.9	0.7
Ponceau 4R	16255	0.7	0.5	0.9	0.6	0.4	0.3	0.7	0.6	0.2	r. 0	0.6	ז. 0	0.8	0.7	0.5	1.0	0.6	0.4
Ponceau 6R	16290	0.8	0.2	0.8	0.4	0.3	0.1	0.6	0.2	-. 1	I.I	0.2	0.8	0.5	0.4	0.2	0.8	0.2	0.2
Ponceau MX	16150	0.2	0.7	0.5	0.6	0.5	0.5	0.8	0.9	0.4	0.3	0.9	0.5	0.8	0.9	0.9	I.I	0.9	0.8
Ponceau SX	14700	0.4	0.7	0.5	0.6	0.5	0.5	0.8	0.9	0.4	0.6	0.9	0.5	0.8	0.9	0.9	I. 1	0.9	0.8
Red 2G	18050	- 0.6	0.6	0.7	0.6	0.4	0.5	0.7	0.9	0.4	0.8	0.8	0.7	0.8	0.7	0.9	1.0	0.9	0.9
Red 6B	18055	0.4	0.3	0.4	0.5	0.4	0.2	0.6	0.5	0.4	0.6	0.4	0.4	0.7	0.7	0.4	0.8	0.5	0.9
Red rob	17200	0.2	0.5	0.6	0.6	0.4	0.3	0.7	0.8	0.4	0.3	0.6	0.6	0.8	0.7	0.5	1.0	0.8	0.9
Red FB	14780	0.0	0.3	0.1	0.2	0.4	0.2	0.7	0.4	0.6	0.0	0.4	-. 1	0.3	0.7	0.4	1.0	0.4	1.3
Rhodamine B	45170	0.5	1.0	0.9	1.0	1.0	1.0	0.9	I. 0	0.8	0.7	1.5	I. 0	I. 3	1.6	1.7	I. 4	I. 0	1.8
Scarlet GN	14815	0.9	0.7	0.9	0.8	0.8	0.6	0.8	I. 0	0.5	I.I	0.9	1.0	I.I	1.2	1.0	I.	I. 0	1.2

TABLE V
R_{F} and R_{X} (with respect to Orange G) values for yellow and orange dyes

Colour	Colour index No.	Approximate $R_{\text {F }}$ values									Approximate Rx values								
		Solvent No.									Solvent No.								
		\boldsymbol{r}	2	3	4	5	6	7	8	II	I	2	3	4	5	6	7	8	II
Auramine	41000	0.3	I. 0	0.9	1.0	0.9	1.0	not vis- ible	0.8	0.8	0.4	r. 4	1.0	1.6	I. 4	I. 9	not vis- ible	I. 3	x. 8
Acid Yellow	13015	. 0.7	0.6	0.9	0.6	0.6	0.5	0.7	0.7	0.4	0.8	0.9	1.0	0.9	0.9	0.9	1.1	1.0	1.0
Chrysoidine	11270	- 0.1	0.8	0.7	0.9	0.8	0.9	0.1	0.9	0.8	0.2	1.2	0.7	1.6	1.2	r. 7	0.2	1.4	r. 8
Chrysoin S	14270	0.5	0.8	0.8	0.6	0.9	0.7	0.4	0.8	0.5	0.6	1.2	0.9	0.9	1.3	1.4	0.7	1.2	1.0
Naphthol Yellow S	10316	0.6	0.7	0.8	0.7	0.7	0.6	not vis- ible	0.7	0.5	0.7	I.	0.9	I.I	I.I	I.I	not visible	1.I	I. 0
Orange G	16230	0.8	0.7	0.9	0.6	0.7	0.5	0.7	0.7	0.4	1.0	I. 0	1.0	1.0	1.O	1.0	1.0	1.0	1.0
Orange GGN	15980	0.6	0.7	0.8	0.6	0.6	0.5	0.2	0.7	0.4	0.8	I. 0	0.9	1.0	I. 0	1.0	0.3	1.0	1.0
Orange I	14600	0.4	0.8	0.8	0.7	0.9	0.7	0.1	0.8	0.5	0.6	1.2	0.9	I.I	1.3	I. 4	0.2	1.2	1.2
Orange RN	15970	0.4 ,	0.9	0.7	0.6,	0.6,	0.5,	0.1	0.7 ,	0.7	0.5	1.	0.8	0.9,	o.8,	0.9,	. 2	1.0,	1.6
Quinoline	47005	0.5 0.5		0.4	0.8 0.6	0.9 0.7	0.8 0.6	0.1	0.8	0.7	0.7 0.1 0.1	I. 0	0.5	1.3 10	I. I I	1.5 1.2	-. 1	1.2 0.9	1. 6
Yellow	47005	0.3							0.7		0.4							1.0	
Sunset Yellow	15985	0.6	0.7	0.8	0.6	0.6	0.5	0.2	0.7	0.4	0.7	0.9	0.9	10	0.9	1.0	0.4	1.0	1.O
Tartrazine	19140	0.8	0.4	0.8	0.4	0.5	0.3	0.4	0.5	0.3	1.0	0.6	0.8	0.6	0.7	0.6	0.6	0.7	0.6
Yellow 2G	r8965	0.9	0.8	1.0	0.6	0.8	0.6	0.9	0.7	0.4	I.I	1.2	1.I	r.o	1.2	1.2	1.5	1.0	I. 0

TABLE VI
R_{F} and $\boldsymbol{R}_{\boldsymbol{X}}$ (with respect to Orange \dot{G}) values for brown and violet dyes

Colour	Colour Approximate R_{F} values index No. Solvent No.									Approximate $\boldsymbol{R}_{\boldsymbol{X}}$ values						
										Solvent No.						
		I	2	3	4	5		14	15	I	2	3	4	5	II 14	15
Brown FK	-	streak	streak	streak	0.6	streak		streak	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	streak	streak	streak	0.9	streak	I.I, streak 1.3	0.6, 0.7
Chocolate Brown FB	-	streak	streak	streak	streak	streak			small streak	streak	streak	streak	streak	streak	0.00 .0	small streak
Chocolate Brown HT	20285	streak	streak	streak	streak	streak			long streak	streak	streak	streak	streak	streak	0.00 .0	long streak
Acid Magenta	42685		$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	0.9	0.6	$\begin{aligned} & 0.5, \\ & 0.6 \end{aligned}$		not visible	not visible	I. 4	$\begin{aligned} & 0.7, \\ & \text { I. } 0 \end{aligned}$	1.I	0.8	$\begin{aligned} & 0.8, \\ & 0.9 \end{aligned}$	0.3 not visible	not visible
Methyl Violet	42535	streak	I. 0	$\begin{aligned} & 0.8, \\ & 0.9 \end{aligned}$	1.0	r.0	$\begin{aligned} & 0.8, \\ & 0.9 \end{aligned}$	0.8	0.7	streak	1.5	I.O,	I. 4	1. 6	$\begin{aligned} & \text { I.3, } 1.9 \\ & \text { I. } 4 \end{aligned}$	I. 1
Violet BNP	-	0.7	0.8	0.9	0.9	0.9	0.5	0.4	0.5	1.0	1.3	1.1	1.3	1.4	0.7 1.1	0.7
Violet 5BN	42650		0.8	0.9	0.9	0.9	0.5	0.4	0.5	1.0	1.3	I.I	I. 3	1.4	0.7 I.I	0.7
Violet 6B	42640		0.8	1.0	1.0	0.9	$\begin{aligned} & 0.5, \\ & 0.6, \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.4, \\ & 0.5 \end{aligned}$	0.6	0.8	1.3	1.2	I. 4	1.4	$\begin{aligned} & 0.8, \text { I.I, } \\ & 0.9, \text { I. } 2 \\ & \text { I.0 } \end{aligned}$	0.9

ABLE VII

fand R_{X} (with respect to Orange G) values for green, blue and black dyes

slour	Colour index No.	Approximate R_{F} values									Approximate $R_{\boldsymbol{X}}$ values								
		Solvent No.									Solvent No.								
		I	2	3	4	5	II	12	13	10	I	2	3	4	5	\boldsymbol{r} I	12	13	Io
ast Green FCF reen S uinea Green B ight Green	42053	0.9	0.8	1.0	0.8	0.8	0.1	0.1	0.8	0.8	1.2	I.I	I.I	1.0	1.1	0.5	0.2	1.0	I. 0
	44090	0.9	0.8	0.9	0.8	0.8	0.1	0.1	0.7	0.8	1.2	1.1	1.0	1.0	1.2	0.4	0.2	0.9	1.0
	42085	0.7	0.9	1.0	1.0	0.9	0.3	0.3	0.8	0.9	0.9	1.2	I. 1	1.3	1.3	I.I	I. 4	1.0	1.2
	42095	0.9	0.8	1.0	0.9	0.8	0.3	o. 1	0.8	0.8	I.I	1.1	I. 1	I. 2	I.I	0.9	0.5	I. 0	. 0
lue VRS	42045		0.9	I. 0	0.9	0.9	0.3	0.2	0.8	0.9	I. 1	1.2	r.I	1.2	1.3	I. 1	1.0	1.0	I. 2
adanthrene																			
Blue ${ }^{\text {a }}$	69800	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
adigo Carmine	73015	0.2,	0.4	0.5	0.6	0.5	0.3	0.2	0.8	0.7	0.3	0.6	0.6	0.8	0.7	1.0	1.0	1.0	0.9
		0.3									0.4								
atent Blue V	42051	0.9	0.9	1.0	0.9	0.9	O. 1	0.0	0.8	0.9	1.2	1.2	1.1	1.1	1.3	0.2	0.0	1.0	1.2
lack 7984	27755	0.2	0.3	0.2	0.4	0.4	O.r	0.0	0.7	0.5	0.2	0.4	0.2	0.6	0.5	0.4	0.0	0.9	0.7
lack PN	28440	0.4	0.3	0.2	0.4	0.4	O. 1	0.0	0.7	0.7	0.4	0.4	0.2	0.6	0.5	0.4	0.0	0.9	0.9

a Indanthrene Blue is insoluble in water and most organic solvents.
the sample solution are also overspotted with spots of the suspected dyes. The unknown dye is identified by giving a single spot with the correct standard while all the other standards give rise to double spots.

If the sample contains several dyes, more than one solvent may be necessary for complete confirmation of the dyes.

DISCUSSION

In constructing the table of codes for the dyes, slight variations in the development characteristics of the dyes have been taken into account so that some dyes occur under a number of different codes. Brown FK, Chocolate Brown FB and Chocolate Brown HT have not been included in this table as they streak in the solvents used. If the standard dyes, Orange G and Amaranth, run very differently when overspotted on the sample from when they are spotted separately on the plate then the spots in the sample should be coded twice, once using the standards in the sample to divide up the plate and once using the standard spotted separately to divide up the plate. By this means all possible dyes will be obtained, but a number of these will be rejected on the basis of colour and R_{F} value. However, do not discount dyes which could give rise to the colour of the spot, e.g. an orange coloured spot may be a red and yellow dye superimposed.

As most problems arise from the possibility of a red and yellow dye being together in the mixture, the separation of the reds, oranges and yellows are set out in Table VIII. All $\boldsymbol{R}_{\boldsymbol{F}}$ and $\boldsymbol{R}_{\boldsymbol{X}}$ values have been calculated by measuring to the leading edge of a spot as this was found to be more reliable for spots which tail. When confirming the identity of a dye by running it with standard dyes it is useful to observe

TABLE VIII.
SEPARATION OF REDS, ORANGES AND YELLOWS IN SOLVENTS I, 2,3 AND 4
Dyes in italics are completely separated from the others.

$$
R_{F}=0
$$

the plate under UV light of 254 nm and 350 nm as some of the dyes fluoresce. The following mixtures of dyes could not be separated in any of the solvents tried: Chocolate Brown HT and Chocolate Brown FB, Ponceau 3R and Ponceau MX, Violet 5BN and Violet BNP.

Chocolate Brown HT can be tentatively distinguished from Chocolate Brown FB by running in solvent 15 on silica gel. Chocolate Brown FB produces a small streak from the spotting line whereas Chocolate Brown HT produces two spots and a streak from the spotting line. The two spots travel higher than the streak from Chocolate Brown FB.

Aldred ${ }^{6}$ has reported that Violet 5BN and Violet BNP can be separated on silica gel using a mixture of 2 -methyl propan-I-ol, ethanol and water as developing solvent. When this system was tried we did not obtain a separation of the samples of Violet 5BN and Violet BNP which we were using. Some of these dyes may be broken down during extraction from the foodstuffs, or in the foodstuff itself, and the decomposition products may affect the separation of the dyes. Work is in progress on these aspects to see how they will affect the identification scheme and further publications of the results of this work will follow.

Violet 5 BN is permitted only in South Africa and Violet BNP is permitted only in Denmark, New Zealand and the United Kingdom. Consequently the need to separate these two dyes should not arise very often. However, they can be distinguished by their IR spectra. No work has been carried out on extraction of these dyes from foodstuffs and it is realised that co-extractives may affect the running characteristics of various dyes but by overspotting the sample with the suspected dyes in the final confirmation any irregularities should not affect the identification of the dyestuff.

Fig. I. A simple device for the measurement of R_{F} values. A - B, resistance wire mounted on perspex; C, a developed thin-layer plate; $P, I k \Omega$ potentiometer; $V, 2.5 \mathrm{~V} . \mathrm{f} . \mathrm{s} . \mathrm{d}$. voltmeter; D , contact probe.

THIN-LAYER CHROMATOGRAPHIC TECHNIQUES

R_{F} measurement

To relieve the tedium of measuring a large number of R_{F} values a simple electrical device was constructed. The device consists of a perspex template which slides over the thin-layer plate. The template has a length of resistance wire stretched between two terminals and a sliding contact for making contact with the resistance wire. The resistancerwire is made part of a simple potentiometer circuit as shown in Fig. I. The template is placed over the thin-layer plate and adjusted so that terminal " A " is over the spotting line. The sliding contact is moved to the solvent front or the standard spot, if R_{X} values are required, and the potentiometer " P " adjusted so that the voltmeter reads 1.0 units. The sliding contact is then moved over the spot whose R_{F} or R_{X} value is required and the voltmeter reading noted. The template is then moved along keeping it in contact with the bottom edge of the plate until it is over the next spot.

Documentation of chromatograms

Copies of the thin-layer chromatograms were made by a simple blue print type procedure. The spots on the plates are scribed round with a needle and then placed coated surface down on a piece of "Elackline" paper. (Blackline paper for ammonia development, $Z Y_{5} M$, obtainable from Mason Ltd., Colchester.) The back of the plate is illuminated by means of photoflood bulbs for approximately 40 sec . The plate is removed and the paper is suspended in a tank containing a few millilitres of 0.88 ammonia solution for about I min. The print obtained consists of black spots ringed with a white line.

REFERENCES

[^1]
[^0]: * Borough polytechnic.

[^1]: I P. Wollenweber, J. Chromatog., 7 (1962) 557.
 2 W. B. Chapman and D. Onkland, J. Ass. Publ. Anal., 6 (1968) 124.
 3 A. R. Perry and D. G. Woolley, J. Ass. Publ. Anal., 7 (1969) 94.
 4 J. F. Barrett and A. J. Ryan, Nature, 199 (1963) 372.
 5 G. J. Dickes, J. Ass. Publ. Anal., 3 (r965) 49.
 6 J. B. Aldred, J. Ass. Publ. Anal., 3 (1965) 79.
 7 J. Davidek and E. Davidkova, J. Chromatog., 26 (1967) 529.
 8 J. R. Parrish, J. Chyomatog., 33 (I968) 542.
 9 R. J. T. Graham and A. E. Nya, J. Chromatog., 43 (Ig69) 547.
 ro K.-T. Wang, Nature, 213 (1967) 212.
 ir H.-C. Chinag, J. Chromatog., 40 (rg69) i8g.
 12 H.-C. Chiang and S. L. Lin, J. Chromatog., 44 (1969) 203.
 13 H.-C. Chiang and C.-H. Chen, J. Pharm. Sci., 59 (1970) 266.
 J. Chromatog., 54 (1971) 393-404

